首页> 外文OA文献 >Video Compressive Sensing for Spatial Multiplexing Cameras using Motion-Flow Models
【2h】

Video Compressive Sensing for Spatial Multiplexing Cameras using Motion-Flow Models

机译:使用运动流模型的空间多路复用摄像机的视频压缩传感

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spatial multiplexing cameras (SMCs) acquire a (typically static) scene through a series of coded projections using a spatial light modulator (e.g., a digital micro-mirror device) and a few optical sensors. This approach finds use in imaging applications where full-frame sensors are either too expensive (e.g., for short-wave infrared wavelengths) or unavailable. Existing SMC systems reconstruct static scenes using techniques from compressive sensing (CS). For videos, however, existing acquisition and recovery methods deliver poor quality. In this paper, we propose the CS multi-scale video (CS-MUVI) sensing and recovery framework for high-quality video acquisition and recovery using SMCs. Our framework features novel sensing matrices that enable the efficient computation of a low-resolution video preview, while enabling high-resolution video recovery using convex optimization. To further improve the quality of the reconstructed videos, we extract optical-flow estimates from the low-resolution previews and impose them as constraints in the recovery procedure. We demonstrate the efficacy of our CS-MUVI framework for a host of synthetic and real measured SMC video data, and we show that high-quality videos can be recovered at roughly 60× compression.
机译:空间多路复用摄像机(SMC)使用空间光调制器(例如数字微镜设备)和一些光学传感器,通过一系列编码的投影来获取(通常是静态的)场景。这种方法可用于全帧传感器过于昂贵(例如,对于短波红外波长而言)或无法使用的成像应用中。现有的SMC系统使用压缩感知(CS)技术重建静态场景。但是,对于视频而言,现有的采集和恢复方法质量较差。在本文中,我们提出了CS多尺度视频(CS-MUVI)传感和恢复框架,用于使用SMC进行高质量的视频采集和恢复。我们的框架具有新颖的感测矩阵,可以有效地计算低分辨率视频预览,同时使用凸优化实现高分辨率视频恢复。为了进一步提高重建视频的质量,我们从低分辨率预览中提取了光流估计值,并将其作为恢复过程的约束条件。我们展示了CS-MUVI框架对大量合成和真实测量的SMC视频数据的功效,并且我们展示了可以在大约60倍压缩率下恢复高质量视频。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号